41st Annual State Construction Conference

March 3, 2022

Advancements in Heavy Timber Construction: Design & Construction

Presenter: Jessica Scarlett, Regional Director NC I SC I TN WoodWorks – Wood Products Council

DESIGN TOPICS

- CONSTRUCTION TYPES
- FIRE RESISTANCE
- MEP DETAILING
- LATERAL FRAMING
- CONNECTIONS
- CONSTRUCTION PROCESS

CONSTRUCTION TYPES

Q: OF THE 5 CONSTRUCTION TYPES, WHICH ONES CAN MASS TIMBER BE USED IN?

A: ALL 5!

IBC 602

IBC DEFINES 5 CONSTRUCTION TYPES: I, II, III, IV AND V A BUILDING MUST BE CLASSIFIED AS ONE OF THESE

CONSTRUCTION TYPES I & II: All elements required to be non-combustible materials

HOWEVER, THERE ARE EXCEPTIONS INLCUDING SEVERAL FOR MASS TIMBER

IBC 602

ALL WOOD FRAMED BUILDING OPTIONS:

TYPE III Exterior Walls Non-Combustible (May be frtw) Interior Elements any Allowed by Code, including mass timber

TYPE V All building elements are any allowed by code, including mass timber

TYPES III AND V ARE SUBDIVIDED TO A (PROTECTED) AND B (UNPROTECTED)

TYPE IV (HEAVY TIMBER) Exterior Walls Non-Combustible (May be frtw or CLT) Interior elements qualify as heavy timber (Min. Sizes, no concealed spaces)

Chapter 6: Types of Construction

Where does the code allow MT to be used? • Type IB & II: Roof

Decking

Image: StructureCraft Builders

Portland International Jetport

- LEED Gold
- Completed 2012

Design Team: Gensler, Oest Associates Photo Credit: DeStafano & Chamberlain, Inc, Robert Benson Photography

Chapter 6: Types of Construction

Where does the code allow MT to be used?

<u>Type III</u>: Interior elements (floors, roofs, partitions/shafts) and exterior walls if FRT

ICE BLOCK I

west elm

west elm

SACRAMENTO, CA

ICE BLOC<mark>k</mark> I, RMW ARCHITECTURE & INTERIORS, BUEHLER Enginee<mark>ring, Bern</mark>ard André Photography

U OF ARKANSAS STUDENT DORMS

FAYETVILLE, AR

Where does the code allow mass timber to be used?
<u>Type IV</u>: Any interior elements & roofs if meets min. size; exterior walls if FRT. No concealed spaces permitted

Chapter 6: Types of Construction

T3 MINNEAPOLIS

28

MINNEAPOLIS, MN

IMAGE CREDIT: EMA PETER

UMASS DESIGN BUILDING

AMHERST, M

COMPLETED SPRING 2017

PHOTO CREDIT: ALEX SCHREYER

Chapter 6: Types of Construction

Where does the code allow MT to be used?
Type V: Interior elements, roofs & exterior walls

COMMON GROUND HIGH SCHOOL

NEW HAVEN, CT

- 15,000 SF CLASSROOM & MULTI-PURPOSE SPACE ADDITION
 CLT & GLULAM FRAMING SCHEME
 - **TYPE VB CONSTRUCTION**

PHOTO CREDIT: DAVID SUNDBERG AND GRAY ORGANSCHI ARCHITECTURE

Type III: 6 stories

CONSTRUCTION TYPES

Allowable mass timber building size for group B occupancy with NFPA 13 Sprinkler

Image: Christian Columbres Photography

Type V: 4 stories

Type IV: 6 stories

Image credit: Ema Peter

FIRE RESISTANCE

PHOTO CREDIT: FPINNOVATIONS

COMPARATIVE STRENGTH LOSS OF WOOD VERSUS STEEL

100 90 25% loss @ WOOD 80 -30 minutes 70 -60 -50% loss 50 -1020°F 40 STEEL 30 -90% loss @ 30 minutes 20 -1380°F 10 -0 7 10 20 30 40 0

TIME (MINUTES) Results from test sponsored by National Forest Products Association at the Southwest Research Institute SOURCE: AITC

MASS TIMBER DESIGN

FIRE RESISTANCE

FIRE RESISTANCE

SIMILAR TO HEAVY TIMBER, MASS TIMBER PRODUCTS HAVE INHERENT FIRE RESISTANCE PROPERTIES

FIRE RESISTANCE

Construction type selection dictates prescriptive fire resistance requirements:

- Type IV Construction (minimum sizes)
- Other than type IV: Demonstrated fire resistance:
 - IBC 703.3 allows several options, including:
 - ASTM E119 assembly test
 - Calculations per IBC 722 \longrightarrow NDS Chapter 16

FIRE RESISTANCE

FOR EXPOSED WOOD MEMBERS: IBC 722.1 REFERENCES AWC'S NDS CHAPTER 16 (AWC'S TR 10 IS A DESIGN AID TO NDS CHAPTER 16)

FIRE RESISTANCE

MASS TIMBER FIRE DESIGN METHODS:

NDS Chapter 16 Char Calculations vs. ASTM E119 Tested Assembly

- NDS Chpt 16 calcs check structural integrity
- ASTM E119 checks structural integrity, thermal separation (elevated temp. on unexposed side) and burn through (ignition of cotton waste at gaps)
- Reasonable to assume other assembly components such as concrete topping aid in other 2 criteria

Unrestrained Assembly Rating - 1-1/2 Hr.

Restricted Load Condition - 50% maximum allowable bending moment from manufacturers published load tables developed in accordance with the NDS-2012 and CLT Handbook, US Edition.

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

MEP DETAILING

PHOTO CREDIT: ALEX SCHREYER

MASS TIMBER PRODUCTS

ACCOMMODATING MEP

DUE TO EXPOSED MASS TIMBER STRUCTURE AND FINISH, UNIQUE MEP ACCOMMODATION SOLUTIONS ARE REQUIRED

IF USING TYPE IV CONSTRUCTION, NO CONCEALED SPACES ARE ALLOWED

PHOTO CREDIT: WOODWORKS

MASS TIMBER PRODUCTS

ACCOMMODATING MEP

EXPOSED MEP MEP ITEMS LEFT EXPOSED, USUALLY ON CEILING SIDE OF FLOOR ASSEMBLY

MASS TIMBER PRODUCTS

ACCOMMODATING MEP

Photo Credit: KK Law, Courtesy: naturally:wood

RAISED ACCESS FLOOR INSTALLED ON TOP OF FLOOR STRUCTURE PROVIDES 2" TO 18" OF PLENUM SPACE FOR MEP

PHOTO CREDIT: WOODWORKS

ø **WOOD INNOVATION DESIGN CENTER PRINCE GEORGE, BC PHOTO CREDIT: ED WHITE**

INLAID WOOD CEILING PANELS COVER MEP BETWEEN CLT PANELS

WIDC MEP ACCOMMODATION

1 2. J. E.

Base

PHOTO CREDIT: MGA

LATERAL CORE RESISTING SYSTEM:

- COMMONLY USED WITH GLAZING/CURTAIN WALLS
- MAY USE RIGID OR SEMI-RIGID (IF USED WITH Frames at exterior) analysis

MASS TIMBER DESIGN

LATERAL FRAMING SYSTEMS

LIGHT FRAME SHEARWALLS:

- TYPICAL FOR 1-5 STORIES
- TYPICALLY ASSUME FLEXIBLE DIAPHRAGM
- NEED AMPLE WALL AT PERIMETER

LATERAL FRAMING SYSTEMS

CENTRAL CORE: CONCRETE SHEARWALLS

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

TT

MASS TIMBER DESIGN LATERAL FRAMING SYSTEMS

CENTRAL CORE: MASS TIMBER SHEARWALLS

PHOTO CREDIT: ALEX SCHREYER

EXTERIOR STEEL MOMENT FRAME

PHOTO CREDIT: WOODWORKS

LATERAL FRAMING SYSTEMS

INTERIOR STEEL MOMENT FRAME

PHOTO CREDIT: WOODWORKS

LATERAL FRAMING SYSTEMS

ET

PHOTO CREDIT: KOMATSU/JAPAN

PHOTO: ANDREAS SAUTER, TIM CLAY PHOTOGRAPHY

PROPRIETARY RIGID/SEMI-RIGID FRAMES

PHOTO CREDIT: ALEX SCHREYER

CONNECTIONS

CONNECTIONS

CONNECTION DESIGN CONSIDERATIONS:

- STRUCTURAL CAPACITY
- SHRINKAGE
- FIRE
- CONSTRUCTABILITY
- AESTHETICS
- COST

PHOTO CREDIT: ALEX SCHREYER

LONG SELF TAPPING SCREWS USED EXTENSIVELY THROUGHOUT MASS TIMBER CONSTRUCTION

CONNECTIONS

CONNECTIONS

BEAM TO BEAM Connections

PHOTO CREDIT: ALEX SCHREYER

PHOTO CREDIT: MYTICON

CONNECTIONS

BEAM TO COLUMN CONNECTIONS

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

PHOTO CREDIT: STRUCTURECRAFT BUILDERS

CONNECTION

COLUMN TO FOUNDATION CONNECTIONS

PHOTO CREDIT: ALEX SCHREYER

NCON

ICAN

PHOTO CREDIT: CHARLES JUDD

PANEL TO PANEL CONNECTIONS -SURFACE SPLINE

PHOTO CREDIT: ALEX SCHREYER

CONNECTIONS

CONNECTIONS

MASS TIMBER

SOURCING, CONSTRUCTION & COST CONSIDERATIONS

MASS TIMBER PRODUCTS

CONSTRUCTION

WORKING WITH MASS TIMBER: KNOW YOUR SUPPLY CHAIN

- MANUFACTURERS DIFFERENT SPECIES, GRADES AND MAXIMUM PANEL/BEAM SIZES
- TRUCKING LOGISTICS AND COST
- MANUFACTURERS HAVE SPECIFIC CNC CAPABILITIES
- 3RD PARTY FABRICATORS CAN HAVE ADDITIONAL CNC CAPABILITIES

MASS TIMBER PRODUCTS

CONSTRUCTION

DEFINE & COMMUNICATE THE DELIVERABLES YOU NEED FROM THE SUPPLIER:

- SHOP DRAWINGS
- SHOP DRAWINGS WITH ENGINEERING STAMP
- ENGINEERED DRAWINGS AND CALCULATIONS (E.G. AS A DEFERRED SUBMITTAL)

WHAT DOES A MASS TIMBER Construction Process Look Like?

VERY SIMILAR TO A PRECAST CONCRETE Or structural steel project

MASS TIMBER PRODUCTS

CONSTRUCTION

SHOP DRAWINGS ERECTION DRAWINGS PREFABRICATED MEMBERS AND CONNECTIONS

» Current Prescriptive Code Limit - 6 stories or 85 feet

» Over 6 Stories - Alternate Means and Methods Request (AMMR) through performance based design

» Based on the 1910 Heights and Areas Act

*BUILDING FLOOR-TO-FLOOR HEIGHTS ARE SHOWN AT 12'-0" FOR ALL EXAMPLES FOR CLARITY IN COMPARISON BETWEEN 2015 TO 2021 IBC CODES.

BUSINESS OCCUPANCY [GROUP B]

18 STORIES BUILDING HEIGHT ALLOWABLE BUILDIN AVERAGE AREA PER	270' G AREA 972,000 SF STORY 54,000SF	12 STORIES BUILDING HEIGHT 180 FT ALLOWABLE BUILDING AREA 648,000 SF AVERAGE AREA PER STORY 54,000SF	9 STORIES BUILDING HEIGHT 85' ALLOWABLE BUILDING AREA 405,000 SF AVERAGE AREA PER STORY 45,000 SF	6 STORIES MAXIMUM 85' -0" MAXIMUM BUILDING HEIGHT 324,00 SF MAXIMUM AREA
Ϋ́	YPE IV-A	TYPE IV-B	TYPE IV-C	TYPE IV- HT
IBC 2021				IBC 2015

New Building Types

.......

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

100

512,000 SF 297 Apartments, Mixed-Use

Photo: Harbor Bay Real Estate Advisors, Purple Film | Architect: Hartshorne Plunkard Architecture

INTRO, CLEVELAND

9 Stories | 115 ft 8 Timber Over 1 Podium

Type IV-B Variance to expose ~50% ceilings

Photo: Harbor Bay Real Estate Advisors, Image Fiction | Architect: Hartshorne.

kard Architecture

ASCENT, MILWAUKEE

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

493,000 SF 259 APARTMENTS, MIXED-USE

ASCENT, MILWAUKEE Tallest Mass Timber Building in the World

Photo: CD Smith Construction | Architect: Korb & Associates Architects

ASCENT, MILWAUKEE

25 STORIES 19 TIMBER OVER 6 PODIUM, 284 FT

Photo: Korb & Associates Architects | Architect: Korb & Associates Architects

Sources & Works Cited

- 1. LEVER Architecture: <u>https://leverarchitecture.com/projects/albina_yard</u>
- 2. Lendlease: <u>http://www.woodworks.org/wp-content/uploads/4-Story-CLT-Hotel-WoodWorks-Case-Study-Redstone-Arsenal-01-05-16.pdf</u>
- 3. Architect Magazine: https://www.architectmagazine.com/technology/detail/murray-grove-wood-framed-high-rise_o
- 4. City Construction, WW case study: <u>http://www.woodworks.org/wp-content/uploads/FranklinElementarySchool_CaseStudy.pdf</u>
- naturally:wood: <u>https://www.naturallywood.com/sites/default/files/documents/resources/brockcommons_constructionoverview_web.pdf</u>
- 6. Solid Timber Construction: <u>http://itac.utah.edu/ITAC/ST_Perform_files/STC%20PPP%20V1.1.pdf</u>
- 7. Structurlam: <u>https://www.structurlam.com/whats-new/uncategorized/concrete-vs-cross-laminated-timber/</u>
- 8. Lendlease: https://www.thinkwood.com/wp-content/uploads/2018/02/Think-Wood-CEU-Cross-Laminated-Timber-2013.pdf
- 9. Naturally: Wood: https://www.naturallywood.com/sites/default/files/documents/resources/brock_commons_tallwood_house_apr_2018_web_003.pdf
- 10. CLT Handbook: <u>https://www.thinkwood.com/clthandbook</u>
- 11. Fast + Epp: <u>http://www.woodworks.org/wp-content/uploads/GAFNER-Mass-Timber-Building-Systems-Understanding-the-Options-Webinar-160511.pdf</u>
- 12. Canadian Design & Construction Report: <u>https://www.cadcr.com/topping-off-of-the-worlds-tallest-timber-structure-celebrated-in-vancouver/</u>

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Jessica Scarlett, Regional Director NC I SC I TN Jessica.Scarlett@WoodWorks.org

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2018

