42nd Annual State Construction Conference

March 2, 2023

Life Cycle Cost Analysis Update

Pivoting Toward Sustainability

Tom Galdi, PE - SCO Thomas Vu, PE - AEI 3/02/2023

Recent NC Energy Directives

Executive Order 80

Increase Use of Clean Energy Technologies and Energy Efficient Measures

House Bill 951

Utilities to Take Reasonable Steps to Achieve Carbon Neutrality by 2050

2023 State Construction Conference

NC*DOA

National and International Targets

Paris Agreement and Executive Orders

- Power Sector 100% Carbon Free by 2035
- Net Zero Economy by 2050.

PARIS CLIMATE AGREEMENT

emissions by mid-century

Limit the avg. global temperature increase to < 2° centigrade + achieve net zero

2.

Align financial flows in the world with these objectives

How to Emit Less Carbon

- Efficiency
- Lower GWP Refrigerants
- Electrification

eGRID Emission Factors

Report: Replacing coal plants with solar, wind is cheaper

BY CARLY WANNA Bloomberg

Replacing coal power plants across the United States with renewable energy projects would reduce carbon emissions and require less water.

It would also save money.

Nearly all existing U.S. coal plants require more cash to operate than the cost of replacing them with new wind or solar projects, according to a report published Monday by San Francisco-based climate think tank Energy Innovation.

The finding is in line with past research by BloombergNEF that determined building new solar and wind farms is cheaper than operating existing coal or gas power plants in much of the world. energy in the U.S. is President Joe Biden's climate legislation, which provides billions of dollars in incentives for clean energy infrastructure.

"The Inflation Reduction Act has made this local replacement and reinvestment scenario so economic and so much cheaper than coal," said Michelle Solomon, a policy analyst at Energy Innovation and the lead author of the report. "It really creates a big opportunity to diversify the economics in coal communities."

The law includes a 10% tax credit for so-called "energy communities," including areas with retired coal plants, to transition to clean energy infrastructure.

The report's authors calculated the costs of operating each of 210 coal plants in the United

 well as future maintenance expenditures. They s then compared those numbers to costs associated with installing and operating new wind and solar projects nearby. In all but one case, the renewable project required

less cash. Energy Innovation has tracked the costs of new renewable projects in three Coal Cost Crossover reports since 2019. The first report found that running 62% of existing coal capacity in the U.S. cost more than producing the same amount of energy from renewable source

es. That increased to 72% in the 2021 edition. Now, incentives from

Act mean the share of coal power that's more expensive has risen to 99%.

coal The White House's push to move the U.S.

industry groups, as well a some members of Congress – like Democratic Sen. Joe Manchin of West Virginia – who have argued that the plans will strip jobs from communities that need them.

But even with renewables costing less overall, replacing the country's coal plants would require billions in investment, which the study authors say would create economic opportunity. Mike O'Boyle, an author of the report and a director at Energy Innovation, says he hopes the new research will encourage public utilities commissions to invest in renewable ener-

gy. "Those regulators are some of the most important policymakers and actors in the energy transition," said O'Boyle. "Now they've got tools to take action role."

G.S. 143-64.10-15 Energy Policy and Life Cycle Cost Analysis

HIGHLIGHTS

- The State shall take a leadership role in aggressively undertaking energy conservation in North Carolina.
- Facility Designs shall take into consideration the total Life Cycle Cost.
- Energy Consumption Analysis of the facilities 'Energy Consuming Systems'.

http://interscope2.doa.state.nc.us/sco/main.htm

design of new state facilities in North Carolina has not undergone any significant improvement in quality as a result of life cycle costing. The primary reason for this appears to be that life cycle costing is treated as an "academic exercise", rather than as a design element, by architects and engineers. The goal for this text is to help rectify this situation."

• "Since the passage of this legislation, the

2nd Law of Thermodynamics

If the particles represent gas molecules at normal temperatures inside a closed container, which of the illustrated configurations came first?

If you tossed bricks off a truck, which kind of pile of bricks would you more likely produce?

2023 State Construction Conference

Ę

LCCA – Why Update

Due – 22 + years

SIR Results not Intuitive

Repetitive Analysis and Results

Shift Focus

Existing LCC Data Sheets

		ALL AND	STATE CONSTR	UCTION OF
IFE CYCLE COST AN			N.C. DEPT. OF AL	MINISTRAT
FOR STATE FACILITI	=5	S	RALEIGH, NO	RTH CAROI
DATA FOR ALTERNATIVE CONSTRUCTION YEAR ECONOMIC LIFF INFLATION RATE] 		
CAPITAL INVESTMENT				
CAPITAL LOAN/BOND INTEREST RATE LOAN/BOND TERM		\$200,000 % % Years		
ANNUAL OPERATING COSTS AN	ND CONSUMPT	TION		
ELECTRICITY NATURAL GAS PROPANE FUEL OIL COAL		\$20,000 \$ \$ \$ \$ \$ \$		KWH MCF GAL GAL TONS
MAINTENANCE	<u> </u>	\$7,000 \$		
NON-RECURRING REPAIR/REPL	ACEMENT COS	STS		-
	1	YEAR	COST	S S S
				s s s
		•		-

			STO T	2 × 2	STATI	E CONSTRUCTION OFFICE
	LIFE CYCLE CO	OST ANALYSIS	S A	38	N.C. DE	PT. OF ADMINISTRATION
	FOR STATE	FACILITIES	Carlos Carlos	Ŋ	RAI	LEIGH, NORTH CAROLINA
YEAR	CAPITAL \$	ENERGY \$	MAINTENANCE \$	REPAIR/I	REPLACE \$	TOTAL COST
1	\$200,000	\$20,000	\$7,000		\$0	\$227,000
2	\$0	\$20,600	\$7,210		\$0	\$27,810
3	\$0	\$21,218	\$7,426		\$0	\$28,644
4	\$0	\$21,855	\$7,649		\$0	\$29,504
5	\$0	\$22,510	\$7,879		\$0	\$30,389
6	\$0	\$23,185	\$8,115		\$0	\$31,300
7	\$0	\$23,881	\$8,358		\$0	\$32,239
8	\$0	\$24,597	\$8,609		\$0	\$33,207
9	\$0	\$25,335	\$8,867		\$0	\$34,203
10	\$0	\$26,095	\$9,133		\$0	\$35,229
11	\$0	\$26,878	\$9,407		\$0	\$36,286
12	\$0	\$27,685	\$9,690		\$0	\$37,374
13	\$0	\$28,515	\$9,980		\$0	\$38,496
14	\$0	\$29,371	\$10,280		\$0	\$39,650
15	\$0	\$30,252	\$10,588		\$0	\$40,840
16	\$0	\$31,159	\$10,906		\$0	\$42,065
17	\$0	\$32,094	\$11,233		\$0	\$43,327
18	\$0	\$33,057	\$11,570		\$0	\$44,627
19	\$0	\$34,049	\$11,917		\$0	\$45,966
20	\$0	\$35,070	\$12,275		\$0	\$47,345
21	\$0	\$36,122	\$12,643		\$0	\$48,765
22	\$0	\$37,206	\$13,022		\$0	\$50,228
23	\$0	\$38,322	\$13,413		\$0	\$51,735
24	\$0	\$39,472	\$13,815		\$0	\$53,287
25	\$0	\$40,656	\$14,230		\$0	\$54,885
26	\$0	\$41,876	\$14,656		\$0	\$56,532
27	\$0	\$43,132	\$15,096		\$0	\$58,228
28	\$0	\$44,426	\$15,549		\$0	\$59,975
29	\$0	\$45,759	\$16,015		\$0	\$61,774
30	\$0	\$47,131	\$16,496		\$0	\$63,627
31	\$0	\$48,545	\$16,991		\$0	\$65,536
32	\$0	\$50,002	\$17,501		\$0	\$67,502
33	\$0	\$51,502	\$18,026		\$0	\$69,527
34	\$0	\$53,047	\$18,566		\$0	\$71,613
35	\$0	\$54,638	\$19,123		\$0	\$73,761
TOT.	\$200,000	\$1,209,242	\$423,235		\$0	
	TOTAL LIFE CYCLE C	OST FOR ALTERNA	ATIVE NO.0			\$1,832,476

2023 State Construction Conference

READING SIR SUMMARY SHEETS

(A)	(B)	(C)	(D)	(E)	(F)	(G)
Alternative ID	Life Cycle Investment Cost	Life Cycle Operating Cost	Increased Investment Cost	Operating Cost Savings	SIR	Rank
A1.0	\$14,800	\$362,046	N/A	N/A	N/A	Base Case
A1.1	\$19,750	\$355,791	\$4,950	\$6,255	1.26	1
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2

(A)	(B)	(C)	(D)	(E)	(F)	(G)
Alternative	Life Cycle Investment Cost	Life Cycle Operating Cost	Increased Investment Cost	Operating Cost Savings	SIR	Rank
P1-1	\$14,442	\$63,206	N/A	N/A	N/A	Base Case
P1-2	\$24,071	\$48,220	\$9,629	\$14,986	1.56	1
P1-3	\$12,837	\$30,757	-\$1,605	\$32,449	-20.22	9
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
			\$0	\$0	0.00	2
	and the second s		\$0	\$0	0.00	2

This option is actually the lowest LCC

	(A)	(B)	(C)	(D)	(E)	(F)	(G)
		Life Cycle	Life Cycle	Increased	Operating		
	Alternative	Investment	Operating	Investment	Cost	SIR	Rank
	ID	Cost	Cost	Cost	Savings		
1	B0	\$840,000	\$2,151,348	N/A	N/A	N/A	Base Case
2	H-1	\$770,000	\$2,134,927	-\$70,000	\$16,421	-0.23	7
3	H-2	\$1,050,000	\$2,347,150	\$210,000	-\$195,802	-0.93	9
4	H-3	\$1,190,000	\$2,283,603	\$350,000	-\$132,255	-0.38	8
5				\$0	\$0	0.00	1
6				\$0	\$0	0.00	1
7		1. S.		\$0	\$0	0.00	1
2023 State Const				\$0	\$0	0.00	1

Ę

Takeaways from Review of LCCA Reports

Common Results

Moving Forward USER FRIENDLY INTUITIVE PROCESS EASY TO COLLECT AND COMPILE ONGOING RESULTS. MAKE RESULTS PUBLIC TO BE BUILT UPON.

×

FOCUS MORE ON ENERGY CONSUMING SYSTEMS. JOIN PUSH TOWARD SUSTAINABILITY.

Notable Updates

- Comparisons Approved by Owner at Contract Negotiation or Soon After.
- An Expectation of a Minimum Two LCC comparisons.
- HVAC System Comparison Required with One Option Sustainable (Not 'Business as Usual').

Business as Usual

Not Business as Usual?

• "U.S. Achieves Fusion Energy Breakthrough"

Photovoltaic

Ę

Life Cycle Costing toward Sustainability

Heavy Timber Construction

• Renewable and Recyclable

Metal Roofing

- Recyclable
- 30-50 year life

Life Cycle Costing toward Sustainability

DHHS Campus – Salvaged concrete from demolished parking lots used as sub-base.

Daylighting

- Double-loaded core
- · Skylights at deep floor plate
- Low-E glass, with sunshades and ceramic fritting

HVRF (Hybrid VRF)

Coming in 2023

Less chance of installation problems

Avoids some upcoming restrictions on refrigerant in egress corridors and refrigerant monitoring requirements.

Water Source Equipment

Heat Recovery Chiller

Heater

Water-Source Products Heat Recovery with Cooling Load

Water Source Equipment

Same machine as HR chiller and Heater. No reversing valve. Internal controls determine mode.

Ę

Ę

Reversing Valve In position A cooling Mode

Air Source Heat Pumps

NC*DOA

DOE Cold Climate Heat Pump Challenge

Performance Requirements

Seasonal Heating

- 8.5 HSPF2 (ASHRAE Region V)
- Heating at 5°F [-15°C]
- Minimum COP of 2.1-2.4 at 5°F
- Capacity ratio of 100% for 5°F capacity to 47°F capacity
- Minimum turndown ratio at 47°F
- Compressor cut-in and cut-out temperatures

Heating at -15°F [-26°C] (optional)

 HP operation at -15°F as measured by compressor cut-in and cut-out temperatures

2023 State Construction Conference

Ę

2024 NCECC - 2021 ICC - ASHRAE 90.1-2019 - Includes Air to Water Heat Pumps

Equipment	Co Size Category		Cooling-Operation Efficiency Air-Source (EER, FL/IPLV), Btu/W-hr		Heat Pump	Test							
Туре	Refrigerating Capacity Ton	Path A		Path B	Path B	Path B				Conditions OAT	Conditions OAT	Entering/Leav	Procedure
			Path B				(db/wb) °F	Low 95°F/105°F	Medium 105°F/120°F	High 120°F/140°F			
Per ASHRAE 90).1-2019 Addendur	m y (approved Dec	ember 9. 2-21)										
	<150	≥9.595 FL	≥9.215 FL	47 db 43 wb	≥3.290	≥2.770	≥2.310						
A in	<150	≥13.02 IPLV.IP	≥15.01 IPLV.IP	17 db 15 wb	≥2.029	≥1.775	≥1.483						
Air-source	- 450	≥9.595 FL	≥9.215 FL	47 db 43 wb	≥3.290	≥2.770	≥2.310	AHRI 550/590					
	>100	≥13.30 IPLV.IP	≥15.30 IPLV.IP	17 db 15 wb	≥2.029	≥1.775	≥1.483						

2023 State Construction Conference

Ę

More "Not Business As Usual" Equipment

2023 State Construction Conference

Ē

Hot Water Supply Temperature

What is needed by the zone equipment?

 Most equipment can be selected for space heating with 100°F to 110°F hot water

Equipment	Minimum Hot Water Supply Temperature
DOAS Air Handler	>80F
Central Air Handler/VAV	95-105F
Single Zone VAV AHU	100-105F
VAV boxes (4row)	95-105F
Fan Coil Units w/ Changeover coil	100-115F

© 2022 Trane | 52

2023 State Construction Conference

Ę

2023 State Construction Conference

Ē

Air Cooled Heat Pump Equipment

Air Cooled Heat Pump Equipment

2023 State Construction Conference

NC*DOA

Ē

System Configurations and Options Base System

© 2022 Trane | 62

In-space electric

Large Building – Heat Recovery

How Tesla's Ingenious Heat Pump Gives It An Edge Over Other Electric Cars

Tesla's effective heat pump helps maximize the car's power in all weather conditions, making it a triumph card against other EVs.

BY MILICA CIKUSA PUBLISHED 7 DAYS AGO

Heat Pipes

Results Available for Public Use

				L	ife Cycle	Cost Analysis Summary of Eval	uations		
	SCO ID #	Owner	Eng/ Arch.	Project	Disc. A/M/E	Option 1 (Baseline)	Option 2 (Evaluated)	Payback (yrs)	Sel. (1 or 2)
1	20-22343	NCSU	AEI	Int. Sci. Bldg.	А	Glazing - Solarban double pane	Glazing - Solarban triple pane	120.2	1
2	20-22343	NCSU	AEI	Int. Sci. Bldg.	А	Roof - R30	Roof - R50	528.2	1
3	20-22343	NCSU	AEI	Int. Sci. Bldg.	А	Wall - R21	Wall R-30	158	1
4	20-22343	NCSU	AEI	Int. Sci. Bldg.	М	DOAS w/wrap around heat pipe	DOAS w/Konvecta High Performance Wrap System	8.2	2
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									

PV & Battery (Microgrid)

- United Therapeutics (RTP)
- Net-Zero cGMP Warehouse
- No OnSite Fossil Fuels
- Ballasted Rooftop Solar (563 kW)

PV & Battery (Microgrid)

- Tesla Megapack ilo Diesel Generators
- Operate in 'Island Mode' without Utility Power
- 6.2 mWh / 1.54 kW Total Lithium Iron Phosphate (LFP) Battery
 - Assumed Zero PV Contribution
 - Assumed 8 Hour Fire Pump (Code) – 1,000 kWh
 - 24 Hour Full Facility 2,724 kWh
 - 48 Hour Cold Storage 1,586 kWh

Heat Recovery Chillers

- University of Virginia
- Conversion MTHW (230F) LTHW (170F)
- 1800-ton York CYK
- 42F Chilled Water
- 30 MMBH 170F Heating Hot Water
- 1.62 kW/Ton (COP=2.17)
- Reduces utility costs by over \$1M per year and eliminates 20k metric tons of CO2 emissions per year

Retrofits – Going All Electric Heating

Phase

 \sim

All

STEP 4 Hill & Haynes: ENERGY USAGE ()

Retrofits – Going All Electric Heating

Enhanced Energy Recovery

- NC State Plant Science Building
- Enhanced Energy Recovery Loop & Skid

2023 State Construction Conference

NC*DOA

Results energy calculations: Reduction of heating energy: 97% Reduction of cooling energy: 19%	without ERS	with ERS	nr of hours	nr of hours with external heat/cold
	(MMBtu)	(MMBtu)	(h)	(h)
heating requirement	13'223.6	269.7	7'968	864
including reheating after dehumidifying	(6'726.5)	(16.5)	(4'699)	(209)
cooling requirement	30'185.8	24'166.3	5'491	5'491

Enhanced Energy Recovery

Ground-Souce Heat Pumps

- City of Durham Mist Lake Facility (171k gsf)
- 500-ton ground-source heat pump
- 500 ft. deep bores, 180 bores total.
- \$50k annual cost savings over 50 years

De-Coupled HVAC Systems

20-30% energy savings compared to all-air VAV reheat systems

Active Chilled Beams

Passive Chilled Beams

2023 State Construction Conference

Radiant Ceiling Panels

2023 State Construction Conference

Radiant Floors

2023 State Construction Conference

Ę

Passive Strategies

- Ryerson Education Facility (16k gsf, Lake County, IL)
- PHIUS Zero 2021
- Super insulated and ultraairtight building envelope
- Downsized mechanical equipment
- R-90 Roof
- R-60 Walls
- Glazing Assembly U-value: 0.138

Equipment Bidding - G.S. 143-64.12

• "The Department of Administration shall develop and implement policies, procedures, and standards to ensure that state purchasing practices improve energy efficiency and take the cost of the product over the economic life of the product into consideration". (Life Cycle Bidding is not specifically required)

Chiller LCC Bidding

BID DATA FORM - ATTACH TO FORM OF PROPOSAL

PROJECT OW	NER:				
PROJECT TITI	LE:				
SCO ID #:					
Electricity Cos	st \$/kwh		-		
Life Cycle (yrs	5)		-		
Designer Data	1				
		Chiller Ut	lization Profile	1	Outda an Al
Land	1	Hours	Entering '	Leaving '	Outdoor A
Load	Load	per	Cond. Water	Cond. Water	Dry Bulb 4
%	(tons)	Year	(deg F)	(deg F)	(deg F)
100		88	85	95	95
/0		20/9	/0	00 75	80 65
25		1051	65	75	60 55
Vendor Data		Base Bid Ch	iller Performanc	•	
Vendor Data		Base Bid Chi	iller Performanc	e	AH # M 1
Vendor Data	per	Base Bid Ch Alt # M - 1A	iller Performance	e Alt # M - 1C Maput 3	Alt # M - 10 Mapuf 4
Vendor Data Alternate numb Manufacturer N	ber lame	Base Bid Ch Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 11 Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number	per Jame	Base Bid Ch Alt # M - 1A Manuf. 1	Iller Performance Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 11 Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10	per Jame 00 % Load	Base Bid Ch Alt # M - 1A Manuf. 1	iller Performance Alt # M -18 Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 7 Input KW @ 7	per Jame 20 % Load 5 % Load 0 % Load	Base Bid Chi Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 7 Input KW @ 2	per lame 00 % Load 5 % Load 0 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 5 Input KW @ 5 Input KW @ 5 Input KW @ 5	per lame 00 % Load 5 % Load 0 % Load 5 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 7 Input KW @ 2 Binput KW @ 2	ber lame 00 % Load 5 % Load 0 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1	iller Performance Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 11 Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 5 Input KW @ 2 Bid Price (\$) Calculation	ber Jame 00 % Load 5 % Load 0 % Load 5 % Load	Base Bid Ch Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 11 Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 2 Input KW @ 2 Bid Price (\$) Calculation	ber Jame 5 % Load 5 % Load 5 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 2 Bid Price (\$) Calculation 1st year energy Life Cycle Cost	per Jame 20 % Load 5 % Load 0 % Load 5 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1	iller Performanc Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3 \$0 \$0	Alt # M - 11 Manuf. 4 \$0 \$0
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 1 Input KW @ 2 Bid Price (\$) Calculation 1st year energy Life Cycle Cost	ber lame 5 % Load 5 % Load 5 % Load 5 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1 \$0 \$0	iller Performance Alt # M -1B Manuf. 2	e Alt # M - 1C Manuf. 3	Alt # M - 11 Manuf. 4 50 \$0
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 5 Input KW @ 2 Bid Price (\$) Calculation 1st year energy Life Cycle Cost Vendor Data	ber lame 5 % Load 5 % Load 5 % Load 5 % Load	Base Bid Ch Alt # M - 1A Manuf. 1	iller Performance Alt # M -1B Manuf. 2 \$0 \$0	e Alt # M - 1C Manuf. 3 \$0 \$0 \$0	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 5 Input KW @ 2 Bid Price (\$) Calculation 1st year energy Life Cycle Cost Vendor Data	ber Jame 20 % Load 5 % Load 5 % Load 5 % Load y (\$) t Highe	Base Bid Chi Alt # M - 1A Manuf. 1 \$0 \$0 er Eff. Preferred Al	iller Performance Alt # M -1B Manuf. 2 \$0 \$0 \$0 ternate Chiller P	e Alt # M - 1C Manuf. 3 \$0 \$0 \$0	Alt # M - 1[Manuf. 4
Vendor Data Alternate numb Manufacturer N Model Number Input KW @ 10 Input KW @ 10 Input KW @ 2 Bid Price (\$) Calculation 1st year energy Life Cycle Cost Vendor Data Alternate numb	Der Jame 5 % Load 0 % Load 5 % Load 5 % Load 4 Load 4 Load 4 Load 5 % Load 5 % Load 5 % Load 5 % Load	Base Bid Chi Alt # M - 1A Manuf. 1 \$0 \$0 \$0 er Eff. Preferred Al Alt # M - 2A	siller Performance Alt # M -1B Manuf. 2 \$0 \$0 \$0 ternate Chiller P Alt # M - 2B	e Alt # M - 1C Manuf. 3 \$0 \$0 \$0 Performance Alt # M - 2C	Alt # M - 1[Manuf. 4 \$0 \$0 \$0 Alt # M - 2[

Can Bid a second chiller type

 Higher Eff. Preferred Alternate Chiller Performance

 Alternate number
 Alt # M - 2A
 Alt # M - 2B
 Alt # M - 2C
 Alt # M - 2D

 Manufacturer Name
 Manuf. 1
 Manuf. 2
 Manuf. 3
 Manuf. 4

 Style
 Input KW @ 100 % Load
 Input KW @ 50 % Load
 Input KW @ 25 % Load

 Input KW @ 25 % Load
 Input KW @ 25 % Load
 Input KW @ 25 % Load

Calculation 1st year energy (\$) \$0 \$0 \$0 Life Cycle Cost \$0 \$0 \$0 \$0

Cooling Tower LCC Bidding

BID DATA FORM - ATTACH TO FORM OF PROPOSAL

utdoor Air
Wet Bulb
(deg F)'
78
66
54
40
40
40 .lt # M - 3D
40 It # M - 3D Manuf. 4
40 Jt # M - 3D Manuf. 4
40 It # M - 3D Manuf. 4
40 It # M - 3D Manuf. 4
40 It # M - 3D Manuf. 4
40 Jt # M - 3D Manuf. 4
40 It # M - 3D Manuf. 4
40 It # M - 3D Manuf. 4
40 It # M - 3D Manuf. 4

Pump Energy is now Taken into Account.

Tower Pumping Cost (\$) \$(<u>م</u>		
		\$0	\$0
Total Life Cycle Cost (\$) \$0	\$0	\$0	\$0

Default data may be edited by engineer if project specific data available.
 Spray nozzle pressure applicable to counterflow towers only.

Default Data is Provided

https://ncadmin.nc.gov/business es/state-construction/forms-anddocuments#design-review State of North Carolina

LIFE CYCLE COST MANUAL

State of NC 3/2/2022

THE END

Questions? tom.galdi@doa.nc.gov

